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Learning Objectives

1. Understand the general principles of Bayesian 
reasoning

2. Bayesian reanalysis of some recent “positive” 
and “negative” randomized clinical trials (RCTs)

3. Bayesian analysis of a recently completed local 
RCT
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Background

The need for statistical models
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Some data

• 8 events in a group of 97 patients
• 29 events in a control group of 97 patients
• Risk difference is (8/97) - (29/97) = -22%
• Risk ratio is (8/97) / (29/97) = .28
• What inferential statements concerning the risk ratios or 

risk differences can be made?
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Statistical inference (frequentist)
• Statistical inference requires a fundamental concept - 

Likelihood function 
• Indicates how likely a particular population is to produce 

an observed sample (X).
• ie P(X|Θ) or L(X|Θ) be the distribution of the data X, 

where Θ is assumed to be fixed but unknown model 
parameter
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Statistical inference

• fisher.test(matrix(c(8,29,89,68), nrow=2)
• Fisher's Exact Test for Count Data
• data:  matrix(c(8, 29, 89, 68), nrow = 2)
• p-value = 2e-04
• alternative hypothesis: true odds ratio is not equal to 1
• 95 percent confidence interval: 0.079 -  0.514
• sample estimates: odds ratio 0.212
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What is the underlying model?

Model is two independent binomial random variables 
𝑋1∼𝐵𝑖𝑛(𝑛1,𝜃1) and 𝑋2∼𝐵𝑖𝑛(𝑛2,𝜃2) with null hypothesis 
𝜃1=𝜃2. 



It’s not only about the data

8doi:https://doi.org/10.1073/pnas.2203150119

• Statistical inferences require a mathematical model
• A mathematical model aims to explain a complex 

phenomenon -> better understanding & decision making

https://doi.org/10.1073/pnas.2203150119


Modelling – beyond the data

• Models act as a mediating tool btw what we observe, 
and what we believe is the data generating mechanism

• Modelling is not an objective enterprise, assumptions are 
always present!

• A mathematical model should be the beginning of a 
discussion, not the (definitive) end

• Blind model acceptance is not correct at best, dangerous 
at worst, and disastrous at worst.

• All models are wrong, but some are useful. — Box 
(1979)
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https://www.sciencedirect.com/science/article/abs/pii/B9780124381506500182


Example # 1

A very “positive” trial
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CASTLE-HF- Too good to be true?
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October 12, 2023

https://www.nejm.org/toc/nejm/389/15?query=article_issue_link


Frequentist analysis

• fisher.test(matrix(c(8,29,89,68), 
nrow=2)

• Fisher's Exact Test for Count 
Data

• data:  matrix(c(8, 29, 89, 68), 
nrow = 2)

• p-value = 2e-04
• alternative hypothesis: true odds 

ratio is not equal to 1
• 95 percent confidence interval: 

0.079 -  0.514
• sample estimates: odds ratio 

0.212 12



Bayesian paradigm
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Reproduce results
• Frequentist

• OR = exp(-1.557) = 0.21 (95%CI 0.09 – 0.49)

• Bayesian – vague prior

• OR = exp(-1.60) = 0.20 (95%CrI 0.09 – 0.47)
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If the Bayesian model gives the same results, why 
might we be still interested in it?

15

1. Easier to understand the results – probabilities of hypotheses 
being true, P(Ho|data), as opposed to probability of observing 
more extreme data than was actually observed, P(data| Ho)

2. Concentrate on parameter estimation and not NHST
3. Can examine complete probability distribution and not limited 

to examining one artificial cutpoint (@ the null)
4. Main reason can look at more complex models, including 

incorporating prior knowledge



Bayesian – vague prior
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Are there potential biases?

• If yes, is the current model adequate?
• How would you model any biases?
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The bias of early stopping
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JAMA. 2010;303(12):1180-1187

Truncated (n=91) vs. non-truncated (n=424) trials 
examining the same question

≅ 5 fold overestimation for very small trials compared to effects in non-truncated trials



Potential biases
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Inadequate concealment

JAMA. 1995;273:408-412

≅ 40% overestimation for trials with inadequate concealment
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Potential bias
(Unblinding or ascertainment / performance bias)

JAMA. 1995;273:408-412

≅ 20% overestimation of treatment effect for unblinded 
compared to effects from blinded trials 

𝜒2                                          p



Potential bias
(Concealment bias or bad luck with randomization)
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Prognosis worse with older pts, females, worse FC, lower EF, DM, higher BNP

What’s the probability of 6 heads tossing a fair coin?



Prior beliefs (summation)
• Premature stopping (≅ 5 fold overestimation) OR 0.2 -> ≅ 0.8
• Poor concealment (40% overestimation) OR 0.8 -> ≅ 1.0
• Lack of blinding (≅ 10-20% overestimation) OR 1.0 -> 1.1
• Combined prior belief, based on study characteristic, not based on study 

data,  N(1.1, 0.2) (OR range 0.75 – 1.60)
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Updated CASTLE-HF Bayesian analysis
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+

posterior

likelihood prior



Example # 4

A “negative” trial
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Reproducing results with Bayesian analysis
(using vague prior)
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Bayesian analysis (vague prior)
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Remember the authors' conclusions "eCPR and cCPR had similar effects on survival"
What is the probability this is true? Need to define similar?
Assuming +/- 2 lives / 100 is similar,
blue area represents this equivalence probability, 20.8%.
There remains a 60.2% that eCPR offers a clinically meaningful survival benefit (orange 
area to right of blue area).
Bayes has certainly deepened our appreciation of this data



Bayesian analysis (informative prior)
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Some prior information exists from 2 previous RCTs and the Bayesian analysis can take this 
information into account.
PRAGUE & ARREST trials (combined) 25 successes and 122 failures in cCRP (beta(25,122)).
PRAGUE & ARREST trials (combined) 44 successes and 94 failures in eCRP (beta(44,94)).



Example # 3

Updating prior knowledge with new evidence

Ticagrelor Compared to Clopidogrel in aCute 
Coronary syndromes – TC4 a pragmatic cluster 

randomized controlled trial
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EBM publications & guidelines
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PLATO

CCS Guidelines 2012 & 2018



Some (transient) doubters

• FDA refused 1st review in 2009 , accepted 2nd in 2011 
dissenting opinions (6-4) 
– “Lack of Robustness of PLATO Superiority with Failure in the US 

Makes a Confirmatory Study Mandatory.”
– “Besides failure in the US, superiority was only evident in the 

adjudicated results.”
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Why different conclusions – same data
• 1st review emphasis on separate models – “splitters”
• 2nd review emphasis on pooled model – “lumpers” treats all 

patients as identical -> inferences on “average patient”
• 3rd model option hierarchical model – borrowing information
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T clinically better C = 48%

Equivalent = 33%

T clinically worse C = 19%

Hierarchical
Bayesian



Bayesian network meta-analysis

MACE
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The (PICO) research question

Is a DAPT regime of ticagrelor / aspirin superior to 
clopidogrel / aspirin in reducing cardiovascular (CV) events 
in patients undergoing percutaneous coronary interventions 
(PCI) following an acute coronary syndrome (ACS)?

– Population – ACS pts post PCI
– Intervention - ticagrelor / aspirin 
– Comparator - clopidogrel / aspirin 
– Outcome - death or CV hospitalizations
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Clarke M. PLoS Med 2004
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Methods

• From Oct 2018 to Mar 2021, ACS patients with PCI 
• Randomized into pragmatic, open-label, time clustered, trial 
• 1o endpoint composite of all-cause mortality, non-fatal MI, or 

ischemic stroke (MACE). 
• 1o safety endpoint was hemorrhagic stroke or GI bleeding 

requiring hospitalization.
• Outcomes were ascertained within 12 monthsusing 

administrative databases
• Bayesian Cox proportional hazard models were used to 

evaluate all outcomes, using  vague, “skeptical”, 
“enthusiastic”, and “summary” informative priors. 

37



Results
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Results
 Clopidogrel Ticagrelor 

n 555 450 

Age (mean (SD)) 67.56 (10.92) 65.16 (11.33) 

Sex (male), n (%) 420 (75.7) 338 (75.1) 

Height, cm (mean (SD)) 170.60 (9.47) 171.04 (9.30) 

Weight, kg (mean (SD)) 83.05 (21.99) 83.31 (17.78) 

Smoking status, n (%)   

   Current 136 (24.6) 110 (24.6) 

Race, n (%)   

   Caucasian 453 (81.6) 376 (83.6) 

Previous DAPT, n (%)   

   No 409 (74.1) 341 (76.3) 

ACS diagnosis, n (%)   

   STEMI 116 (20.9) 94 (20.9) 

   NSTEMI 210 (37.9) 207 (46.1) 

   Unstable Angina 89 (16.1) 69 (15.4) 

   Other 139(25.1) 79(17.6) 

Hypertension, n (%) 387 (69.9) 300 (67.0) 

SBP (mean (SD)) 140.62 (22.23) 140.02 (22.62) 

DBP (mean (SD)) 79.72 (13.69) 80.43 (14.99) 

Heart rate (mean (SD)) 72.94 (15.43) 72.39 (15.11) 

Dyslipidemia, n (%) 376 (68.0) 301 (67.2) 

Diabetic, n (%) 185 (33.5) 139 (31.0) 

Previous MI, n (%) 159 (28.6) 120 (26.9) 

Previous PCI, n (%) 144 (25.9) 114 (25.4) 

CHF, n (%) 32 (5.8) 15 (3.3) 

Previous CABG, n (%) 77 (13.9) 32 (7.1) 

Previous stroke, n (%) 27 (4.9) 14 (3.1) 

History of PAD, n (%) 5 (0.9) 2 (0.4) 

creatinine (median [IQR]) 83.00 [71.00, 97.00] 83.00 [71.00, 97.00] 
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Results – Kaplan Meier Curve (MACE)
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Results – Kaplan Meier Curve (Bleeding)
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Bayesian paradigm
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Which prior?

• Vague – only data from our trial
• Enthusiastic – data from largest most positive trial 

(PLATO)
• Skeptical – data from NA PLATO subgroup
• Summary - data from our Bayesian meta-analysis of all 

RCTs
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Results (MACE)
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A
C
B
D

Range of practical equivalence btw HR 0.9 – 1.1

Clinically meaningful benefit HR  < 0.9

Clinically meaningful harm HR  >1.1



Results (Bleeding)
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E
G
F
H



TC4 - Conclusions

• 1st RCT with NA pts since PLATO (2009), ⬆ NA evidence 
base > 50%

• Accomplished for 300K, original trial > 100MM
• Regardless of the choice of prior, there is only a low 

probability that ticagrelor (@$1200/y) is clinically superior 
to clopidogrel (@$168/y) 

• Weak evidence (≈20% probability) for clinical important 
(HR>1.1) risk of excessive bleeding with ticagrelor

• Additional annual Quebec health care cost $25MM for a 
ticagrelor first policy needs re-evaluation

• This conclusion is also supported by
– Plato hierarchical reanalysis
– Bayesian network meta-analysis
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Final thoughts of Bayesian RCT analyses

• can provide meaningful probability statements
• can avoid common NHST misinterpretations (e.g. 

absence of evidence is evidence of absence)
• can better account for uncertainties by considering 

complex models
• can allow for updating of existing knowledge with new 

evidence
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